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Abstract
The Bell matrix has become an interesting interdisciplinary topic involving
quantum information theory and the Yang–Baxter equation. It is an
antisymmetric unitary solution of the braided Yang–Baxter equation and yields
all the Bell states by acting on the product basis. In this paper, using the
Faddeev–Reshetikhin–Takhtadjian (FRT) construction, we obtain a quantum
algebra associated with the Bell matrix. We explore two characteristic algebraic
structures in its four-dimensional representation. One is a representation with
a composition series, namely, it has irreducible subrepresentations but is not
completely reducible. The other is a direct sum of two-dimensional cyclic
representations, and can be spanned by four maximally entangled states as
local unitary transformations of the Bell states. Both of them are expected to
be realized in physical systems and exploited in quantum information theory.
Besides, we present the other quantum algebra associated with the unitary
evolution of the Bell states (or the Yang–Baxterization of the Bell matrix).

PACS numbers: 02.10.Kn, 03.65.Ud, 03.67.Lx

1. Introduction

The present paper is one in a series of recent papers [1–8] that attempt to set up natural
connections between quantum information theory [9] and the Yang–Baxter equation (YBE)
[10, 11]. These connections are expected to be helpful for solving problems in quantum
information theory as well as developing the YBE theory. Quantum information theory is a
fast growing new scientific subject and combines fundamentals of quantum mechanics with
modern computer science. It mainly deals with the problem of how to store and operate
physical information to perform an assigned task (such as quantum computation in a quantum
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computer). The YBE was originally found in the procedure of looking for exact solutions
of two-dimensional quantum field theories or lattice models in statistical physics. It has
been a well-developed discipline in the sense of both physics (integrable models [12]) and
mathematics (quantum groups [13]).

There are natural similarities between quantum entanglements [14] and topological
entanglements [15]. Quantum entanglements describe that some quantum states in quantum
mechanics cannot be a tensor product of another two quantum states. Topological
entanglements denote topological configurations like links or knots which are closures of
braids. Aravind [16] observed that it is possible to identify a quantum measurement of the
quantum state with deleting one component of the link. But this type of correspondence
between quantum states and topological links is not basis-independent. A deeper method (we
believe) suggested by Kauffman and Lomonaco [2] is to consider unitary quantum gates Ř

that are both universal for quantum computation and are also the solutions to the condition for
topological braiding. Such Ř-matrices are unitary solutions to the braided YBE, and can be
used as universal quantum gates which have an entangling power of transforming a separate
quantum state to an entangled one. Moreover, in topological quantum computing proposed
by Kitaev [17] and Freedman et al [18], unitary braids are exploited as logic gates to operate
quasiparticles called anyons, namely, quantum information is processed by braiding anyons.
In condensed matter physics, Abelian or non-Abelian anyons can be created in the fractional
quantum Hall effect [19]. Topological quantum computation is a very appealing approach for
experimentally realizing a physical quantum computer.

The Bell matrix has become an interesting interdisciplinary topic involving quantum
information theory and the Yang–Baxter equation. The observation that all Bell states can be
generated by the Bell matrix acting on the product basis has been stimulating the recent study:
the Bell matrix is identified with a universal quantum gate [1, 2]; Yang–Baxterization of the
Bell matrix [3, 4] is used to derive the Hamiltonian determining the evolution of the Bell states;
the braid teleportation configuration [6, 7] in terms of the Bell matrix is found to be a sort of
algebraic structure underlying the quantum teleportation. The Bell states play crucial roles in
both fundamental problems and practical applications of quantum information theory [9]. They
are defined by various known entanglement measures to be bipartite maximally entangled,
and have been widely exploited in various topics of quantum information such as quantum
entanglements [14], quantum cryptography [20] and quantum teleportation [21]. The Bell
theorem [22] describes incompatibility between quantum theory and classical deterministic
local models in the form of the Bell inequalities among various statistical correlations.

As a solution of the braided YBE [10, 11], the Bell matrix forms a unitary braid
representation and can be used to calculate the Jones polynomial [5]. But it does not get
involved in the previous study of integral models [12] in some two-dimensional quantum field
theories and statistical physics). Matrix entries of symmetric solutions of eight-vertex models
[11] are either positive or zero and are explained as the Boltzmann weights in statistical physics,
whereas the Bell matrix has negative matrix entries which cannot be the Boltzmann weights.
Here for convenience we call the Bell matrix antisymmetric solution of eight-vertex models,
since it also has eight non-vanishing matrix entries and is non-triangular and non-singular.
Note that in the literature the term ‘eight-vertex model’ was a pronoun presenting the original
model solved by Baxter [11, 23, 24].

In view of the previous work that a new quantum group can be found via a ‘non-standard’
braid group representation [25], in this paper we study the quantum algebra obtained by
applying Faddeev–Reshetikhin–Takhtadjian (FRT) construction [26] to the Bell matrix. We
explore two characteristic algebraic structures in its four-dimensional representation. The one
is a representation with a composition series, namely, it has irreducible subrepresentations
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but is not completely reducible. The other is a direct sum of the two-dimensional cyclic
representations and can be spanned by four maximally entangled states as local unitary
transformations of the Bell states. Both of them are expected to be realized in a physical
system and exploited in quantum information theory. Besides, we determine the unitary
evolution of Bell states via Yang–Baxterization [27, 28] and derive the associated quantum
algebra with the FRT construction.

The plan of this paper is organized as follows. Section 2 introduces the braided YBE, Bell
states and the Bell matrix as a universal quantum gate. Section 3 presents the quantum algebra
associated with the Bell states. Section 4 shows its all two-dimensional representations
and focuses on two specific examples characterizing its four-dimensional representation.
Section 5 discusses the quantum algebra related to the unitary evolution of Bell states. The last
section comments on physical realizations of the Bell matrix and associated quantum algebras
as well as their applications to quantum information and computation.

2. The Bell matrix and a universal quantum gate

The Bell matrix forms a unitary braid representation, generates the Bell states from the product
basis and can be identified with a universal quantum gate in quantum computation. Hence it
becomes an interesting topic involving both quantum information and the YBE.

2.1. The braided Yang–Baxter equation

The YBE without the spectral parameter is called the braided YBE, i.e., the braid group relation
describing low-dimensional topology. Artin’s braid group Bn on n strands has the well-known
presentation in terms of generators b1, . . . , bn−1 satisfying the commutation relation

bibj = bjbi, |i − j | � 2 (1)

and the braid relations

bibi+1bi = bi+1bibi+1, 1 � i � n − 2. (2)

Usually, the last relation leads to the braided version of the YBE, i.e.,

(Ř ⊗ 11d)(11d ⊗ Ř)(Ř ⊗ 11d) = (11d ⊗ Ř)(Ř ⊗ 11d)(11d ⊗ Ř), (3)

with an invertible d2 ⊗ d2 matrix Ř : V ⊗ V → V ⊗ V (V ≡ C
d being a d-dimensional

complex vector space). Relation (3) gives rise to a sequence of representations (πn, (C
d)⊗n)

of Bn

πn(bi) = 11⊗i−1
d ⊗ Ř ⊗ 11⊗n−i−1

d (4)

since clearly πn(bi) and πn(bj ) commute for |i − j | � 2.

2.2. Bell states and Bell matrix

The two-dimensional unit matrix is denoted by 112, the Pauli matrices σx, σy, σz have the
conventional forms, and the symbols σ+, σ− are given by

σ+ = 1

2
(σx + iσy) =

(
0 1
0 0

)
, σ− = 1

2
(σx − iσy) =

(
0 0
1 0

)
, (5)

which are nilpotent operators satisfying σ 2
+ = σ 2

− = 0.
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The two-dimensional Hilbert space H2 spanned by two eigenvectors |m〉,m = 0, 1 of
the spin- 1

2 operators (i.e., Pauli matrices, for example, σz|0〉 = |0〉, σz|1〉 = −|1〉), has a
realization of the coordinate vectors over the complex field C,

|0〉 :=
(

1
0

)
, |1〉 :=

(
0
1

)
, α|0〉 + β|1〉 =

(
α

β

)
, α, β ∈ C. (6)

A state vector in this H2 is usually called a qubit in quantum information theory [9], and
H2

∼= C
2. Denote |ij 〉, i, j = 0, 1 for the product basis of a four-dimensional Hilbert space

over the complex field C, and the four orthonormal Bell states have the forms

|ψ±〉 = 1√
2
(|00〉 ± |11〉), |φ±〉 = 1√

2
(|10〉 ± |01〉) (7)

which are transformed to each other under local unitary transformations denoted by the Pauli
matrices

|ψ−〉 = (112 ⊗ σz)|ψ+〉, |φ+〉 = (112 ⊗ σx)|ψ+〉, |φ−〉 = (112 ⊗ −iσy)|ψ+〉. (8)

There are two Bell matrices, B+ and B−, defined in [3, 4, 6, 7]

B+ = 1√
2

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
0 −1 1 0

−1 0 0 1

⎞
⎟⎟⎠ , B− = 1√

2

⎛
⎜⎜⎝

1 0 0 1
0 1 −1 0
0 1 1 0

−1 0 0 1

⎞
⎟⎟⎠ (9)

which have formalisms in exponential functions

B+ = ei π
4 (σy⊗σx), B− = ei π

4 (σx⊗σy). (10)

The Bell matrix can yield all the Bell states by acting on the product basis, for example,

B+|00〉 = |ψ−〉, B+|11〉 = |ψ+〉, B+|01〉 = |φ−〉, B+|10〉 = |φ+〉. (11)

See [1, 2], the Bell matrix is found to satisfy the braided YBE (3) with d = 2 and forms
a unitary braid representation of the braid group Bn.

2.3. The Bell matrix as a universal quantum gate

A two-qubit gate G is a unitary linear mapping G : V ⊗ V → V where V is a complex
two-dimensional vector space. We say that the gate G is universal for quantum computation
(or just universal) if G together with local unitary transformations (unitary transformations
from V to V ) generates all unitary transformations of the complex vector space of dimension
2n to itself. It is well known [9] that the CNOT gate is a universal quantum gate satisfying

CNOT|00〉 = |00〉, CNOT|01〉 = |01〉,
CNOT|10〉 = |10〉, CNOT|11〉 = |10〉.

(12)

Kauffman and Lomonaco [2] proved that the Bell matrix acts as a universal quantum gate
and gives rise to a specific presentation of the CNOT gate by combining with local unitary
transformations. For example, consider the Bell matrix B− and denote four two-dimensional
unitary matrices α, β, γ, δ by

α =
(

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)
, β =

(−1/
√

2 1/
√

2

i/
√

2 i/
√

2

)
,

γ =
(

1/
√

2 i/
√

2

1/
√

2 −i/
√

2

)
, δ =

(
1 0
0 i

)
,

(13)
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and then is straightforward to verify that

CNOT = (α ⊗ β) · B− · (−γ ⊗ δ).

As a remark, with the help of the Bell matrix as the CNOT gate, it is expected to find
and generalize quantum polynomially complex algorithm that would eventually speed up the
computation on quantum computers.

3. Quantum algebra associated with the Bell matrix

The FRT construction [26] is a standard procedure of obtaining a quantum algebra over the
complex field C associated with the Ř-matrix, an invertible solution of the braided YBE. All the
generators are collected in the T-matrix satisfying the ŘT T relation: Ř(T ⊗T ) = (T ⊗T )Ř.
The FRT construction is originally devised for six-vertex models [12, 13] in which the Ř-
matrix has six non-vanishing matrix entries, whereas the Ř-matrix in this paper is the Bell
matrix with eight non-vanishing matrix entries. Hence our quantum algebra is not completely
the same as Hopf algebras and quantum groups [13], also see [29] for a helpful comment on
generalized quantum algebras.

Let us start with the Řω-matrix, a solution of the YBE without spectral parameter [3, 4],

Řω =

⎛
⎜⎜⎝

1 0 0 q

0 1 1 0
0 ω 1 0

ωq−1 0 0 1

⎞
⎟⎟⎠ , ω = ±1, q �= 0, q ∈ C, (14)

where the Ř−1-matrix is a deformation of the Bell matrix B+, and the Ř1-matrix is a deformation
of a symmetric solution of eight-vertex models. For simplicity, the Bell matrix B− will not be
involved because it gives rise to the same quantum algebra as the B+ matrix.

In this section, we set up a quantum algebra A−1 via the ŘT T relation where the R-matrix
is Ř−1. The T-matrix has non-commutative operators â, b̂, ĉ, d̂ as its matrix entries, and its
tensor product T ⊗ T has the form

T =
(

â b̂

ĉ d̂

)
, T ⊗ T =

⎛
⎜⎜⎜⎝

ââ âb̂ b̂â b̂b̂

âĉ âd̂ b̂ĉ b̂d̂

ĉâ ĉb̂ d̂ â d̂b̂

ĉĉ ĉd̂ d̂ ĉ d̂ d̂

⎞
⎟⎟⎟⎠ , (15)

where the tensor symbol ⊗ in every matrix entry of T ⊗ T has been omitted for convenience.
The ŘT T relation leads to a quantum algebra over the complex field C with the generators
â, b̂, ĉ, d̂ satisfying algebraic relations,

ââ = d̂ d̂, âb̂ = qd̂ĉ, b̂b̂ = ωq2ĉĉ, âĉ = q−1d̂b̂,

âd̂ = d̂ â, b̂â = ωqĉd̂, b̂ĉ = ωĉb̂, ĉâ = ωq−1b̂d̂.
(16)

In this paper, however, we will study the quantum algebraAω generated by four generators
â, b̂, ĉ, d̂ satisfying the algebraic relations (16) except the following two equations,

[F1] ≡ ĉâ − ωq−1b̂d̂ = 0, [F2] ≡ âĉ − q−1d̂b̂ = 0, (17)

because we can derive the following equations,

â[F2] = [F1]â = 0, d̂[F2] = [F1]d̂ = 0,

b̂[F1] = [F2]b̂ = 0, ĉ[F1] = [F2]ĉ = 0
(18)

5



J. Phys. A: Math. Theor. 41 (2008) 055310 Y Zhang et al

in terms of the remaining six algebraic relations. As any one of the four generators â, b̂, ĉ, d̂ is
invertible or nilpotent, [F1] and [F2] will be obviously vanishing, that is to say: in these cases
the Aω algebra is equivalent to the original quantum algebra derived from the ŘT T relation.

With the help of a rescaling qĉ → ĉ, i.e., the deformation parameter q to be absorbed
into a new generator ĉ, the quantum algebra Aω is generated by â, b̂, ĉ, d̂ satisfying algebraic
relations,

ââ = d̂ d̂, âd̂ = d̂ â, b̂b̂ = ωĉĉ,

b̂ĉ = ωĉb̂, âb̂ = d̂ ĉ, b̂â = ωĉd̂.
(19)

The quantum algebra A1, i.e., ω = 1, presents a known quantum algebra obtained from the
ŘT T relation of symmetric solutions of eight-vertex models. But the quantum algebra A−1,
i.e., ω = −1, is very attractive because the Bell matrix becomes interesting only in the recent
study of quantum information.

The quantum algebra A−1 has interesting quotient algebras. As the generator â is a
complex scalar denoted by â = pÎ with the unit Î , the algebra A−1 is reduced to an algebra
generated by â, ĉ, d̂ satisfying algebraic relations,

â = pÎ , d̂2 = p2Î , ĉd̂ = −d̂ ĉ, p �= 0, p ∈ C, (20)

where we define a composition operator b̂ to denote the operator product ĉd̂, i.e., b̂ = p−1d̂ ĉ,
proved to satisfy b̂2 = −ĉ2 and b̂ĉ = −ĉb̂. Another interesting quotient algebra is to require
b̂, ĉ to describe fermions, i.e., they satisfy b̂2 = ĉ2 = 0, b̂ĉ = −b̂ĉ. Especially, as b̂ = ĉ, they
are the same fermion.

The quantum algebra A−1 has one-dimensional representations over the complex field
C : b̂ = ĉ = 0 and â, d̂ are complex numbers satisfying â2 = d̂2, while it also has a one-
dimensional representation over the field including non-commutative Grassman numbers: b̂, ĉ

are the Grassman numbers and â, d̂ are the complex numbers.
Arnaudon et al discussed the exotic bialgebras [30–32] by applying the FRT construction

to non-triangular non-singular R-matrices [33]. The one quantum algebra they have found is
a quotient algebra of our quantum algebra A−1 associated with Bell states. They aimed to
finalize the explicit classification of the matrix bialgebras generated by four elements, however
we are exploring a possible application of quantum groups (or algebras) to the present study
of quantum information theory.

4. Two- and four-dimensional representations of A−1

We list its all two-dimensional representations of the quantum algebra A−1 over the complex
field C and explore two types of interesting algebraic structures in its four-dimensional
representation derived by the coproduct [13] of its generators.

4.1. Two-dimensional representations

The quantum algebra A−1 has two subalgebras formed by â, d̂ and b̂, ĉ, respectively. Hence
it is convenient to require either â (d̂) or b̂ (ĉ) to be a diagonal matrix in a two-dimensional
representation of A−1. Note that the following two-dimensional representations of A−1 will
be found to satisfy [F1] = [F2] = 0.

As the generator â has a non-vanishing eigenvalue λ with two degenerate eigenvectors,
the generators â, b̂, ĉ, d̂ have the following two-dimensional representations over the complex

6
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field C,

â =
(

λ 0
0 λ

)
, d̂ =

(
α β

γ −α

)
, α2 + βγ = λ2, λ �= 0, λ ∈ C

ĉ =
(

c1 c2

c3 −c1

)
, 2c1α = −c3β − c2γ, α, β, γ, c1, c2, c3 ∈ C,

(21)

where the generator b̂ is determined by b̂ = λ−1d̂ ĉ. In this representation, taking α = 0,

β = γ = λ and c1 = µ, c2 = c3 = 0 leads to a representation in terms of the unit matrix 112

and Pauli matrices,

â = λ112, d̂ = λσx, b̂ = −iµσy, ĉ = µσz, λ, µ ∈ C, (22)

while taking α = λ = 1, β = γ = 0 and c1 = 0, c2 = c3 = 1 gives another interesting
representation,

â = 112, d̂ = σz, b̂ = iσy, ĉ = σx. (23)

As the generator â has two distinct complex eigenvalues, λ1 �= λ2, the two-dimensional
representation for the generators â, b̂, ĉ, d̂ over the complex field C is obtained to be

â =
(

λ1 0
0 λ2

)
, d̂ = ε

(
λ1 0
0 −λ2

)
, b̂ = ε

(
0 c2

−c3 0

)
, ĉ =

(
0 c2

c3 0

)
,

(24)

where the parameter ε satisfies ε2 = 1. As b̂, ĉ represent the same fermion, i.e., ε = 1, c2 = 1,

c3 = 0, we have the two-dimensional representation,

b̂ = ĉ =
(

0 1
0 0

)
, â =

(
λ1 0
0 λ2

)
, d̂ =

(
λ1 0
0 −λ2

)
. (25)

Now we study the two-dimensional representation in which the generator b̂ is a diagonal
matrix. If b̂ has an eigenvalue with two degenerate eigenvectors, i.e., a scalar operator, the
generator ĉ has to be vanishing. As b̂ has two distinct eigenvalues p1, p2 with two eigenvectors
	v1, 	v2, p1 = −p2 has to be satisfied because ĉ	v1 is an eigenvector of b̂ with the eigenvalue
−p1. Hence the generators â, b̂, ĉ, d̂ have a non-vanishing two-dimensional representation
over C,

b̂ = pσz, ĉ =
(

0 −p2

1 0

)
, p �= 0,

â =
(

α p2β

β α

)
= α112 + β

(
0 p2

1 0

)
,

d̂ =
(

pβ pα

p−1α pβ

)
= pβ112 + p−1α

(
0 p2

1 0

)
, β �= 0,

(26)

where β = 0 gives an example for the case that â is a scalar.

4.2. Four-dimensional representation: composition series

The coproduct [13] is a linear map � from the vector space V to its tensor product V ⊗ V

satisfying the coassociativity axiom (� ⊗ Id) ◦ � = (Id ⊗ �) ◦ �, where Id is an identity
map. The coproducts of the generators â, b̂, ĉ, d̂ have the forms

�(â) = â ⊗ â′ + b̂ ⊗ ĉ′, �(b̂) = â ⊗ b̂′ + b̂ ⊗ d̂ ′,

�(ĉ) = ĉ ⊗ â′ + d̂ ⊗ ĉ′, �(d̂) = ĉ ⊗ b̂′ + d̂ ⊗ d̂ ′,
(27)

where the generators â′, b̂′, ĉ′, d̂ ′ satisfy the quantum algebra A−1 and play the same roles as
â, b̂, ĉ, d̂ , respectively. It is easy to prove the above coproducts to satisfy algebraic relations

7
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of the quantum algebra A−1, for example,

�(â)�(â) = �(d̂)�(d̂), �(â)�(d̂) = �(d̂)�(â) (28)

and also �([F1]) = �([F1]) = 0 as [F1] = [F2] = 0.
Here we derive four-dimensional representations 4 of A−1 via its coproduct structure in

terms of its known two-dimensional representations and denote this sort of four-dimensional
representation by 4 = 2 ⊗ 2. The representation 4 is defined by the coproduct map from the
generators â, b̂, ĉ, d̂ to their coproducts �(â),�(b̂),�(ĉ),�(d̂) in the way

â|ij 〉 ≡ �(â)|ij 〉, b̂|ij 〉 ≡ �(b̂)|ij 〉, ĉ|ij 〉 ≡ �(ĉ)|ij 〉, d̂|ij 〉 ≡ �(d̂)|ij 〉,
(29)

where |0〉, |1〉 are the bases of 2 and |ij 〉, i, j = 0, 1 are the bases of 4. And these four-
dimensional representations of A−1 satisfy [F1] = [F2] = 0, too.

In the following, we present two examples for its four-dimensional representations. In
the first one, we exploit the two-dimensional representation (25) with λ1 relabeled to be 1 and
λ2 to be λ, i.e.,

â|0〉 = |0〉, â|1〉 = λ|1〉, d̂|0〉 = |0〉, d̂|1〉 = −λ|1〉,
b̂|0〉 = 0, b̂|1〉 = |0〉, ĉ|0〉 = 0, ĉ|1〉 = |0〉, (30)

and the two-dimensional representation for the generators â′, b̂′, ĉ′, d̂ ′,

â′|0〉 = |0〉, â′|1〉 = λ′|1〉, d̂ ′|0〉 = |0〉, d̂ ′|1〉 = −λ′|1〉,
b̂′|0〉 = 0, b̂′|1〉 = |0〉, ĉ′|0〉 = 0, ĉ′|1〉 = |0〉. (31)

This four-dimensional representation 4 has a composition series over C,

{0} ⊂ {|00〉} ⊂ {|00〉, |01〉} ⊂ {|00〉, |01〉|10〉} ⊂ {|00〉, |01〉, |10〉, |11〉}, (32)

where the set {0} consists of zero element and the set {|00〉, |01〉} can be replaced by {|00〉, |10〉}.
An ascending chain of subrepresentations is called a composition series if the successive
quotients are irreducible representations. We will see that each term in our composition series
is an indecomposable representation (i.e. not a direct summand) and all the nontrivial term
is reducible. Namely, the four-dimensional representation has irreducible subrepresentations
but is not completely reducible.

Let us explain this in detail. The vector space {|00〉} forms a one-dimensional irreducible
subrepresentation of A−1,

â|00〉 = |00〉, b̂|00〉 = 0, ĉ|00〉 = 0, d̂|00〉 = |00〉; (33)

the vector space {|00〉, |01〉} forms a two-dimensional subrepresentation of A−1,

â|01〉 = λ′|01〉, b̂|01〉 = |00〉, ĉ|01〉 = |00〉, d̂|01〉 = −λ′|01〉; (34)

and the vector space {|00〉, |10〉} forms another two-dimensional subrepresentation of A−1,

â|10〉 = λ|10〉, b̂|10〉 = |00〉, ĉ|10〉 = |00〉, d̂|10〉 = −λ|10〉; (35)

and so the vector space {|00〉, |01〉, |10〉} forms a three-dimensional subrepresentation for the
algebra A−1.

See figure 1, every horizontal line represents a state in the four-dimensional representation
4 and every line with an oriented arrow denotes a transition between different states which is
caused by the action of a generator.

In the four-dimensional representation 4 = {|00〉, |01〉, |10〉, |11〉}, the actions of all
generators on |11〉 are linear combinations of |ij 〉, i, j = 0, 1,

â|11〉 = |00〉 + λλ′|11〉, b̂|11〉 = −(λ′|01〉 − λ|10〉),
ĉ|11〉 = λ′|01〉 − λ|10〉, d̂|11〉 = |00〉 + λλ′|11〉, (36)

8



J. Phys. A: Math. Theor. 41 (2008) 055310 Y Zhang et al

Figure 1. Four-dimensional representation of A−1 with a composition series (32).

and so is impossible for 4 to have completely reducible representations. Similarly, one sees
from figure 1 that {|00〉} is the only nontrivial subrepresentation of {|00〉, |01〉}, and hence the
representations {|00〉, |01〉}, {|00〉, |10〉}, {|00〉, |01〉, |10〉} and {|00〉, |01〉, |10〉, |11〉} are the
reducible and indecomposable representations.

As λλ′ �= 1, we obtain the second common eigenvector |ψ〉 of the generators â, d̂ which
have the first common eigenvector |00〉,

|ψ〉 = −|00〉 + (1 − λλ′)|11〉, â|ψ〉 = d̂|ψ〉 = λλ′|ψ〉. (37)

In the vector space spanned by |01〉, |10〉, a series of vectors |φn〉 given by

|φn〉 = (λ′)n|01〉 − λn|10〉, â|φn〉 = |φn+1〉, d̂|φn〉 = −|φn+1〉, n ∈ N (38)

form a four-dimensional representation of the quantum algebra A−1 together with the vectors
|ψ〉 and |00〉,
b̂|ψ〉 = −ĉ|ψ〉 = −(1 − λλ′)|φ1〉, b̂|φn〉 = ĉ|φn〉 = ((λ′)n − λn)|00〉, (39)

where |00〉 with any one of |φn〉 forms a two-dimensional irreducible representation.
As λλ′ = 1, we define |ψn〉 = n|00〉 + |11〉, n ∈ N, satisfying

â|ψn〉 = d̂|ψn〉 = |ψn+1〉, b̂|ψn〉 = −|φ1〉, ĉ|ψn〉 = |φ1〉 (40)

which form a four-dimensional representation of A−1 with |φn〉 and |00〉. See figure 1 where
composition series can be easily recognized at the diagrammatical level.

4.3. Four-dimensional representation: 2 ⊗ 2 = 2 ⊕ 2

In the second example, we obtain the four-dimensional representation 4 of A−1 via the
coproduct construction in terms of the two-dimensional representation (22) of the generators
â, b̂, ĉ, d̂ ,

â|0〉 = λ|0〉, â|1〉 = λ|1〉, d̂|0〉 = λ|1〉, d̂|1〉 = λ|0〉,
b̂|0〉 = µ|1〉, b̂|1〉 = −µ|0〉, ĉ|0〉 = µ|0〉, ĉ|1〉 = −µ|1〉 (41)

and the two-dimensional representation of the generators â′, b̂′, ĉ′, d̂ ′ which is the same as (22)
except that λ,µ are replaced by λ′, µ′. In addition, new symbols z, z̄, w, w̄ are introduced,

z = x − iy, z̄ = x + iy, w = v − iu, w̄ = v + iu, (42)

where the symbols x, y, v, u denote the following products:

x = λλ′, y = µµ′, u = λµ′, v = µλ′. (43)

In this four-dimensional representation 4, the generator d̂ has four eigenvectors denoted
by four Dirac kets |χ1〉, |χ2〉, |τ1〉, |τ2〉 in terms of the Bell states |ψ±〉, |φ±〉 (7), given by

9
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Figure 2. A four-dimensional representation of A−1 : 2 ⊗ 2 = 2 ⊕ 2.

|χ1〉 = 1√
2
(|ψ+〉 + i|φ+〉), |χ2〉 = 1√

2
(|ψ−〉 − i|φ−〉),

|τ1〉 = 1√
2
(|ψ−〉 + i|φ−〉), |τ2〉 = 1√

2
(|ψ+〉 − i|φ+〉),

(44)

which are related to four distinct eigenvalues of the generator d̂,

d̂|χ1〉 = z|χ1〉, d̂|χ2〉 = −z|χ2〉, d̂|τ1〉 = −z̄|τ1〉, d̂|τ2〉 = z̄|τ2〉. (45)

The generator â has an eigenvalue z with two degenerate eigenvectors |χ1〉, |χ2〉 and another
eigenvalue z̄ with two degenerate eigenvectors |τ1〉, |τ2〉, i.e.,

â|χ1〉 = z|χ1〉, â|χ2〉 = z|χ2〉, â|τ1〉 = z̄|τ1〉, â|τ2〉 = z̄|τ2〉. (46)

The Dirac kets |χ1〉, |τ1〉 form a two-dimensional cyclic representation 2 for the generators
b̂, ĉ:

b̂|χ1〉 = −w̄|τ1〉, b̂|τ1〉 = w|χ1〉, ĉ|χ1〉 = w̄|τ1〉, ĉ|τ1〉 = w|χ1〉, (47)

and the Dirac kets |χ2〉, |τ2〉 form another two-dimensional cyclic representation 2 given by

b̂|χ2〉 = w̄|τ2〉, b̂|τ2〉 = −w|χ2〉, ĉ|χ2〉 = w̄|τ2〉, ĉ|τ2〉 = w|χ2〉. (48)

Hence we reduce the four-dimensional representation 2 ⊗ 2 into the direct sum of two-
dimensional representations: 2 ⊗ 2 = 2 ⊕ 2. See figure 2 where states denoted by thick lines
have the same eigenvalue and every irreducible representation 2 is cyclic.

With the bases of |χ1〉, |χ2〉, |τ2〉, |τ1〉, the four-dimensional representations of the
generators â, b̂, ĉ, d̂ are given by the following matrices:

â =
(

z 0
0 z̄

)
⊗ 112, b̂ =

(
0 w

w̄ 0

)
⊗ iσy,

ĉ =
(

0 w

w̄ 0

)
⊗ σx, d̂ =

(
z 0
0 z̄

)
⊗ σz.

(49)

These four Dirac kets |χ1〉, |χ2〉, |τ1〉, |τ2〉 are found to be local unitary transformations of
the Bell states (7):

|χ1〉 = (112 ⊗ U1)|ψ+〉, |χ2〉 = (112 ⊗ U2)|ψ+〉,
|τ1〉 = (112 ⊗ U3)|ψ+〉, |τ2〉 = (112 ⊗ U4)|ψ+〉,

(50)

where U1, U2, U3, U4 are unitary matrices given by

U1 = 1√
2
(112 + iσx), U2 = 1√

2
(σz − σy),

U3 = 1√
2
(σz + σy), U4 = 1√

2
(112 − iσx),

(51)

and they form a set of complete orthonormal bases for 2 × 2 matrices,

tr
(
U

†
i Uj

) = 2δij , i, j = 1, 2, 3, 4. (52)

Hence, |χ1〉, |χ2〉, |τ2〉, |τ1〉 are maximally entangled states like the Bell states (7) because
the entangled degree of a quantum state is invariant under local unitary transformations in
quantum information [9].

10
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5. Quantum algebra associated with the unitary evolution of Bell states

We study the quantum algebra associated with the unitary evolution of Bell states determined
by Yang–Baxterization [27, 28].

5.1. Unitary evolution of Bell states via Yang–Baxterization

The YBE with the spectral parameter is called the quantum Yang–Baxter equation (QYBE).
It has the form

Ři(x)Ři+1(xy)Ři(y) = Ři+1(y)Ři(xy)Ři+1(x) (53)

with x or y the spectral parameter. It is well known that one can set up an integrable model
by following a given recipe in terms of a solution of the QYBE, see [10, 11]. At x = y = 0,
obviously, the QYBE reduces to ŘiŘi+1Ři = Ři+1ŘiŘi+1, the same as the braid group relation
(2), bibi+1bi = bi+1bibi+1. Hence a solution Ř(x) of the QYBE always reduces to a braid
group representation b = Ř(0). In other words, Ř(0) = b can be regarded as the asymptotic
condition of a solution Ř(x) of the QYBE. Conversely, similar to a procedure of solving a
differential equation with specified initial-boundary conditions, Baxterization [27] or Yang–
Baxterization [28] represents a procedure of constructing a solution Ř(x) of the QYBE (53)
with the asymptotic condition, Ř(0) = b, where the braiding b-matrix has been specified. For
example, for a b-matrix with two distinct eigenvalues λ1 and λ2, the corresponding Ř(x)-matrix
obtained with Yang–Baxterization is found to be of the form

Ř(x) = b + xλ1λ2b
−1. (54)

Please refer to appendix A of [4] for more detail.
The Bell matrix B± forms a unitary braid representation, i.e., satisfying the braided YBE

(3), see [6, 7] for the proof. Using Yang–Baxterization [3, 4], the corresponding B±(x) matrix
as a solution of the QYBE (53) has the form

B±(x) = 1√
2(1 + x2)

⎛
⎜⎜⎝

1 + x 0 0 q(1 − x)

0 1 + x ±(1 − x) 0
0 ∓(1 − x) 1 + x 0

−q−1(1 − x) 0 0 1 + x

⎞
⎟⎟⎠ , (55)

in which B± = B±(0)|q=1, q called the deformation parameter5.
In terms of new variables of angles θ and ϕ,

cos θ = 1√
1 + x2

, sin θ = x√
1 + x2

, q = e−iϕ, (56)

we rewrite the B±(x) matrix into an exponential function,

B±(θ) = cos

(
π

4
− θ

)
+ 2i sin

(
π

4
− θ

)
H± = ei( π

2 −2θ)H± , (57)

where the symbol H± called the Hamiltonian [3, 4] has the form

H+ = 1
2σn1 ⊗ σn2 , H− = 1

2σn2 ⊗ σn1 ,

σn1 = σ+ e− i
2 (ϕ+π) + σ−e

i
2 (ϕ+π), σn2 = σ+ e− i

2 ϕ + σ−e
i
2 ϕ.

(58)

5 Note that the B±(x) matrix satisfies the free fermion condition [23] and therefore is a special case of the free
fermion Ř-matrix known from [24].

11



J. Phys. A: Math. Theor. 41 (2008) 055310 Y Zhang et al

The unitary evolution of the Bell states under the Hamiltonian H± with the time variable θ is
determined by the unitary B±(θ)-matrix, namely,

B±(θ)|00〉 = cos

(
π

4
− θ

)
|00〉 − eiϕ sin

(
π

4
− θ

)
|11〉,

B±(θ)|11〉 = e−iϕ sin

(
π

4
− θ

)
|00〉 + cos

(
π

4
− θ

)
|11〉,

B±(θ)|01〉 = cos

(
π

4
− θ

)
|01〉 ∓ sin

(
π

4
− θ

)
|10〉,

B±(θ)|10〉 = ± sin

(
π

4
− θ

)
|01〉) + cos

(
π

4
− θ

)
|10〉.

(59)

In the literature, there is a long history of dealing with the eight-vertex models [11, 12],
the Sklyanin algebra [34, 35] and some relevant extensions including Potts models [12, 36].
Solutions of the YBE with the spectral parameter, i.e., symmetric solutions of eight-vertex
models, have double-period elliptic functions [11, 12] as matrix entries. However, they are
nothing with the recent study in quantum information. As a matter of fact, we find standard
methodologies for six-vertex models [12, 13] helpful for the purpose of exploring applications
of the Bell matrix to quantum information. For example, Yang–Baxterization of the Bell matrix
[3, 4] has matrix entries in terms of single-period trigonometric functions which characterize
six-vertex models.

5.2. Quantum algebra associated with the B+(x)-matrix

The B±(x)-matrix (55) is obtained via Yang–Baxterization of the Bell matrix B±, see [3, 4]
for the detail, and is a solution of the YBE with the spectral parameter x. With the help of the
FRT construction [26], there also exists a quantum algebra determined by the following ŘT T

relation:

Ř(xy−1)(T (x) ⊗ T (y)) = (T (y) ⊗ T (x))Ř(xy−1), (60)

which is invariant under the rescaling transformation of the Ř(x)-matrix and T (x)-matrix by
global scalar factors. Here the Ř(x)-matrix has the form of the B±(x)-matrix (55) without the
normalization factor. Assume the T±(x)-matrix to have a formalism similar to B±(x) which
is a linear combination between the Bell matrix B± (9) and its inverse B−1

± ,

B±(x) = B± + 2xB−1
± , T±(x) = T± + 2xT ′

±, (61)

where the B± matrix does not have the normalization factor 1/
√

2 in (9), the T±-matrix has
four noncommutative operators â, b̂, ĉ, d̂ as its matrix entries and the T ′

±-matrix has four
noncommutative operators â′, b̂′, ĉ′, d̂ ′ as its matrix entries. The original ŘT T relation (60)
with the spectral parameters x, y is simplified into the four ŘT T relations independent of the
spectral parameter,

B±(T± ⊗ T±) = (T± ⊗ T±)B±, B±(T ′
± ⊗ T ′

±) = (T ′
± ⊗ T ′

±)B±,

B±(T± ⊗ T ′
±) = (T ′

± ⊗ T±)B±, B±(T ′
± ⊗ T±) = (T± ⊗ T ′

±)B±.
(62)

In the following, for simplicity, we only consider the quantum algebra determined by the ŘT T

relations in terms of the B+, T+ and T ′
+ matrices.

Obviously, the generators â, b̂, ĉ, d̂ and â′, b̂′, ĉ′, d̂ ′ satisfy the same quantum algebra
A−1. The algebraic equation B+(T+ ⊗ T ′

+) = (T ′
+ ⊗ T+)B+ leads to the following algebraic

12
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relations:

[a, a′] = −qcc′ − q−1b′b, {a, b′} = a′b − qcd ′,

{a, c′} = ca′ + q−1d ′b, [a, d ′] = cb′ − c′b,

[b, a′] = b′a − qdc′, [b, b′] = −qdd ′ + qa′a,

{b, c′} = da′ − d ′a, {b, d ′} = db′ − qc′a,

[c, a′] = −ac′ − q−1b′d, {c, b′} = a′d − ad ′,

[c, c′] = q−1aa′ − q−1d ′d, {c, d ′} = c′d + q−1ab′,

[d, a′] = b′c − bc′, [d, b′] = qa′c − bd ′,

[d, c′] = d ′c + q−1ba′, [d, d ′] = q−1bb′ + qc′c,

(63)

while the algebraic equation B+(T
′

+ ⊗ T+) = (T+ ⊗ T ′
+)B+ leads to more constraint algebraic

relations:

[a, a′] = q−1bb′ + qc′c, [a, b′] = −ba′ + qd ′c,

[a, c′] = q−1bd ′ + a′c, [a, d ′] = −bc′ + b′c,

{b, a′} = ab′ − qc′d, [b, b′] = −qaa′ + qd ′d,

{b, c′} = ad ′ − a′d, [b, d ′] = −qac′ + b′d,

{c, a′} = q−1db′ + c′a, {c, b′} = −da′ + d ′a,

[c, c′] = q−1dd ′ − q−1a′a, [c, d ′] = −dc′ − q−1b′a,

[d, a′] = cb′ − c′b, {d, b′} = −qca′ + d ′b,

{d, c′} = cd ′ + q−1a′b, [d, d ′] = −qcc′ − q−1b′b.

(64)

The algebraic relations (63) determined by B+(T+⊗T ′
+) = (T ′

+⊗T+)B+ have the simplified
forms:

[â, â′] = −qĉĉ′ − q−1b̂′b̂, [b̂, b̂′] = −qd̂d̂ ′ + qâ′â,

[â, â′] = [d̂ ′, d̂], [b̂, b̂′] = q2[ĉ, ĉ′],

{a, b′} = a′b − qcd ′, [b, a′] = b′a − qdc′,

{a, b′} = q[d, c′], [b, a′] = −q{d ′, c}
{â, ĉ′} = ĉâ′ + q−1d̂ ′b̂, [ĉ, â′] = −âĉ′ − q−1b̂′d̂,

{â, ĉ′} = q−1[d̂, b̂′], [ĉ, â′] = −q−1{b̂, d̂ ′}
[â, d̂ ′] = ĉb̂′ − ĉ′b̂, {b̂, ĉ′} = d̂ â′ − d̂ ′â,

[â, d̂ ′] = [â′, d̂], {b̂, ĉ′} = {ĉ, b̂′}

(65)

and those algebraic relations (64) from Ř(T ′
+ ⊗ T+) = (T+ ⊗ T ′

+)Ř can be also simplified,

[â, â′] = q−1b̂b̂′ + qĉ′ĉ, [b̂, b̂′] = −qââ′ + qd̂ ′d̂,

[â, â′] = [d̂ ′, d̂], [b̂, b̂′] = q2[ĉ, ĉ′],

[â, b̂′] = −b̂â′ + qd̂ ′ĉ, {â′, b̂} = âb̂′ − qĉ′d̂,

[â, b̂′] = q{d̂, ĉ′}, {â′, b̂} = q[d̂ ′, ĉ],

[â, ĉ′] = q−1b̂d̂ ′ + â′ĉ, {ĉ, â′} = q−1d̂b̂′ + ĉ′â,
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[â, ĉ′] = q−1{d̂, b̂′}, {ĉ, â′} = −q−1[b̂, d̂ ′],

[â, d̂ ′] = −b̂ĉ′ + b̂′ĉ, {b̂, ĉ′} = âd̂ ′ − â′d̂,

[â, d̂ ′] = [â′, d̂], {b̂, ĉ′} = {ĉ, b̂′}.
(66)

After some further algebraic reductions, two types of generators â, b̂, ĉ, d̂ and â′, b̂′, ĉ′, d̂ ′ of
the quantum algebra B−1 are found to satisfy commutative relations,

ââ′ = â′â, d̂d̂ ′ = d̂ ′d̂, b̂b̂′ = b̂′b̂, ĉĉ′ = ĉĉ′,
âb̂′ = â′b̂, b̂′â = b̂â′, d̂ ′ĉ = d̂ ĉ′, ĉd̂ ′ = ĉ′d̂,

âĉ′ = â′ĉ, ĉ′â = ĉâ′, b̂d̂ ′ = b̂′d̂, d̂b̂′ = d̂ ′b̂,

â′d̂ = âd̂ ′, d̂â′ = d̂ ′â, b̂ĉ′ = b̂′ĉ, ĉb̂′ = ĉ′b̂, (67)

and additional algebraic relations similar to those of (19) determining A−1,

â′â = d̂d̂ ′, âd̂ ′ = d̂ ′â, b̂b̂′ = −q2ĉ′ĉ,

b̂ĉ′ = −ĉ′b̂, â′b̂ = qd̂ ′ĉ, b̂â′ = −qĉd̂ ′,
(68)

where the quantum algebra determined by these relations is called the algebra B−1 over the
complex field C. The deformation parameter q is irrelevant due to the rescaling transformation:
qĉ → ĉ and qĉ′ → ĉ′.

Note that further efforts will be needed to obtain interesting algebraic structures in the
representation of the quantum algebra B−1 similar to what we have found in the quantum
algebra A−1. In addition, the quantum algebra B−1 is a quotient algebra of the FRT dual
algebra that Arnaudon et al [30–32] have discussed.

6. Concluding remarks and outlooks

The Bell matrix is an interdisciplinary subject to explore the connections between the YBE
and quantum information theory as well as compare topological entanglements and quantum
entanglements. In this paper, we study the quantum algebra A−1 associated with the Bell
matrix. We find that in its four-dimensional representation there are a composition series over
the complex field C and the representation 2 ⊗ 2 = 2 ⊕ 2. The latter one is not true in the
representation of the Lie algebra [13]. Besides, we show the quantum algebra B−1 associated
with the unitary evolutions of the Bell states.

There still remain interesting unsolved problems in the project of exploring algebraic
structures related to the Bell matrix. For example, (i) does A−1 have a four-dimensional
representation: 2 ⊗ 2 = 1 ⊕ 3? (ii) the construction of universal Ř-matrix [13] in terms of
generators of A−1; (iii) interesting algebraic structures underlying B−1 such as the quantum
double; (iv) new quantum algebras obtained by applying methodologies for deriving the
Sklyanin algebra [34, 35] to the Bell matrix.

About physical realizations of the Bell matrix and quantum algebras A−1 and B−1, they
cannot give rise to an ordinary integrable spin–chain model. Because the Bell matrix and
its Yang–Baxterization have negative entries which cannot be explained as positive (zero)
Boltzmann weights in statistical physics. We choose to study their physical applications in the
quantum information theory. In quantum computation [2–4, 6, 7], the Bell matrix B+ (B−)

and the permutation matrix P can be respectively recognized as a universal quantum gate and
the swap gate. Moreover, P,B+ (B−) yield a representation of the virtual braid group which
is a possible language for universal quantum computing [8, 37].
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Note added. (on our further research based on the present paper). In [37], the high-dimensional Bell matrices
associated with the GHZ states (a generalization of the Bell states) have been constructed in terms of the almost-
complex structure. In [38], the Bell matrix as a unitary braid representation in terms of the representation of the
extraspecial two-groups provides a possible link between the quantum error correction and topological quantum
computing.

References

[1] Dye H A 2003 Unitary solutions to the Yang–Baxter equation in dimension four Quant. Inf. Proc. 2 117–50
[2] Kauffman L H and Lomonaco S J (Jr) 2004 Braiding operators are universal quantum gates New J. Phys. 6 134
[3] Zhang Y, Kauffman L H and Ge M L 2005 Universal quantum gate, Yang–Baxterization and Hamiltonian Int.

J. Quant. Inform. 3 (4)
[4] Zhang Y, Kauffman L H and Ge M L 2005 Yang–Baxterizations, universal quantum gates and Hamiltonians

Quant. Inf. Proc. 4 159–97
[5] Franko J, Rowell E C and Wang Z 2006 Extraspecial 2-groups and images of Braid group representations

J. Knot Theory Ramifications 15 413–28
[6] Zhang Y 2006 Teleportation, Braid group and Temperley–Lieb algebra J. Phys. A: Math. Gen. 39 11599–622
[7] Zhang Y 2006 Algebraic structures underlying quantum information protocols Preprint quant-ph/0601050
[8] Zhang Y, Kauffman L H and Werner R F 2006 Permutation and its partial transpose Int. J. Quant. Inform.

5 469–507 (Preprint quant-ph/0606005)
[9] Nielsen M and Chuang I 1999 Quantum Computation and Quantum Information (Cambridge: Cambridge

University Press)
[10] Yang C N 1967 Some exact results for the many body problems in one dimension with repulsive delta function

interaction Phys. Rev. Lett. 19 1312–4
[11] Baxter R J 1972 Partition function of the eight-vertex lattice model Ann. Phys. 70 193–228
[12] Faddeev L D 1987 Lectures on quantum inverse scattering method Integrable Systems (Nankai Lectures on

Mathematical Physics) (Singapore: World Scientific) pp 23–70
[13] Kassel C 1995 Quantum Groups (New York: Springer)
[14] Werner R F 1989 Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model

Phys. Rev. A 40 4277
[15] Kauffman L H 2002 Knots and Physics (Singapore: World Scientific)
[16] Aravind P K 1997 Borromean entanglement of the GHZ state Potentiality, Entanglement and Passion-at-a-

Distance ed R S Cohen, S Robert, H Michael and S John (Boston: Kluwer Academic)
[17] Kitaev A Yu 2003 Fault-tolerant quantum computation by anyons Ann. Phys. 303 2 (Preprint quant-ph/

9712048)
[18] Freedman M, Kitaev A, Larsen M and Wang Z 2003 Topological quantum computation Bull. Am. Math. Soc.,

N. S. 40 31–8
[19] Sarma S Das, Freedman M, Nayak C, Simon S and Stern A 2007 Non-Abelian anyons and topological quantum

computation Preprint 0707.1889
[20] Ekert A K 1991 Quantum cryptography based on Bell’s theorem Phys. Rev. Lett. 67 661–3
[21] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Teleporting an unknown

quantum state via dual classical and Einstein–Podolsky–Rosen channels Phys. Rev. Lett. 70 1895–9
[22] Bell J S 1964 On the Einstein–Podolsky–Rosen paradox Physics 1 195–200
[23] Fan C and Wu F Y 1970 General lattice model of phase transitions Phys. Rev. B 2 723-733
[24] Felderhof B U 1973 Direct diagonalization of the transfer matrix of the zero field free-Fermion model

Physica 65 421–51
[25] Jing N, Ge M L and Wu Y-S 1991 New quantum group associated with a ‘nonstandard’ Braid group representation

Lett. Math. Phys. 21 183

15

http://dx.doi.org/10.1023/A:1025843426102
http://dx.doi.org/10.1088/1367-2630/6/1/134
http://dx.doi.org/10.1142/S0219749905001547
http://dx.doi.org/10.1007/s11128-005-7655-7
http://dx.doi.org/10.1142/S0218216506004580
http://dx.doi.org/10.1088/0305-4470/39/37/017
http://www.arxiv.org/abs/quant-ph/0601050
http://dx.doi.org/10.1142/S021974990700302X
http://www.arxiv.org/abs/quant-ph/0606005
http://dx.doi.org/10.1103/PhysRevLett.19.1312
http://dx.doi.org/10.1016/0003-4916(72)90335-1
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://www.arxiv.org/abs/quant-ph/
http://www.arxiv.org/abs/9712048
http://dx.doi.org/10.1090/S0273-0979-02-00964-3
http://www.arxiv.org/abs/0707.1889
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevB.2.723
http://dx.doi.org/10.1016/0031-8914(73)90059-1
http://dx.doi.org/10.1007/BF00420369


J. Phys. A: Math. Theor. 41 (2008) 055310 Y Zhang et al

[26] Reshetikhin N Yu, Takhtadjian L A and Faddeev L D 1989 Quantization of Lie groups and Lie algebras Algebra
Analiz 1 178–206

Reshetikhin N Yu, Takhtadjian L A and Faddeev L D 1990 Quantization of Lie groups and Lie algebras
Leningrad Math. J. 1 193–225 (Engl. Transl.)

[27] Jones V F R 1991 Baxterization Int. J. Mod. Phys. A 6 2035–43
[28] Ge M L, Xue K and Wu Y-S 1991 Explicit trigonometric Yang–Baxterization Int. J. Mod. Phys. A 6 3735
[29] Kauffman L H and Radford D E 2003 Bi-oriented quantum algebras, and a generalized Alexander polynomial

for virtual links Contemp. Math. 318 113–40
[30] Arnaudon D, Chakrabarti A, Dobrev V K and Mihov S G 2002 Duality and representations for new exotic

bialgebras J. Math. Phys. 43 6238–64
[31] Arnaudon D, Chakrabarti A, Dobrev V K and Mihov S G 2003 Spectral decomposition and Baxterisation of

exotic bialgebras and associated noncommutative geometries Int. J. Mod. Phys. A 18 4201–13
[32] Arnaudon D, Chakrabarti A, Dobrev V K and Mihov S G 2006 Exotic bialgebra S03: representations,

Baxterisation and applications Ann. Henri Poincare (to appear) (Preprint math.QA/0601708)
[33] Hietarinta J 1993 Solving the two-dimensional constant quantum Yang–Baxter equation J. Math. Phys. 34 1725
[34] Sklyanin E K 1982 Some algebraic structures connected with the Yang–Baxter equation Funct. Anal. Appl. 16

27–34
[35] Sklyanin E K 1983 Some algebraic structures connected with the Yang–Baxter equation: representations of

quantum algebras Funct. Anal. Appl. 17 34–48
[36] Bajhanov V V and Stroganov Yu G 1989 Chiral Potts model as a descendant of the six-vertex model YBE in

Integral Systems ed M Jimbo (Singapore: World Scientific) pp 673–98
[37] Zhang Y and Ge M L 2007 GHZ states, almost-complex structure and Yang–Baxter equation Quant. Inf. Proc.

6 363–79
[38] Zhang Y, Rowell E C, Wu Y-S, Wang Z and Ge M L 2007 From extraspecial two-groups to GHZ states Preprint

0706.1761

16

http://dx.doi.org/10.1142/S0217751X91001027
http://dx.doi.org/10.1142/S0217751X91001817
http://dx.doi.org/10.1063/1.1516845
http://dx.doi.org/10.1142/S0217751X03016100
http://www.arxiv.org/abs/math.QA/0601708
http://dx.doi.org/10.1063/1.530185
http://dx.doi.org/10.1007/s11128-007-0064-3
http://www.arxiv.org/abs/0706.1761

	1. Introduction
	2. The Bell matrix and a universal quantum gate
	2.1. The braided Yang--Baxter equation
	2.2. Bell states and Bell matrix
	2.3. The Bell matrix as a universal quantum gate

	3. Quantum algebra associated with the Bell matrix
	4. Two- and four-dimensional representations
	4.1. Two-dimensional representations
	4.2. Four-dimensional representation: composition series
	4.3. Four-dimensional

	5. Quantum algebra associated with the unitary evolution of Bell states
	5.1. Unitary evolution of Bell states via Yang--Baxterization
	5.2. Quantum algebra

	6. Concluding remarks and outlooks
	Acknowledgments
	References

